Cauchy type functional equations related to some associative rational functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Cauchy-type functional equations

LetG be a Hausdorff topological locally compact group. LetM(G) denote the Banach algebra of all complex and bounded measures on G. For all integers n ≥ 1 and all μ ∈ M(G), we consider the functional equations ∫ G f(xty)dμ(t) = ∑n i=1gi(x)hi(y), x,y ∈ G, where the functions f , {gi}, {hi}: G → C to be determined are bounded and continuous functions on G. We show how the solutions of these equati...

متن کامل

Cm Solutions of Some Functional Equations of Associative Type

In this note we give the continuous solutions of some functional equations of associative type that are strictly monotonic in each variable. Neither solvability nor differentiability conditions will be assumed.

متن کامل

Non-Archimedean stability of Cauchy-Jensen Type functional equation

In this paper we investigate the generalized Hyers-Ulamstability of the following Cauchy-Jensen type functional equation$$QBig(frac{x+y}{2}+zBig)+QBig(frac{x+z}{2}+yBig)+QBig(frac{z+y}{2}+xBig)=2[Q(x)+Q(y)+Q(z)]$$ in non-Archimedean spaces

متن کامل

Associative rational functions in two variables⋆

A rational function R(x, y) over a field is said to be associative if R(R(x, y), z) = R(x,R(y, z)). Associative rational functions over a field define group laws on subsets of the field (plus the point at infinity). In this paper, all the associative rational functions of two variables over an arbitrary field are determined and consequently all the groups obtainable from such functions are dete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

سال: 2019

ISSN: 2300-133X,2081-545X

DOI: 10.2478/aupcsm-2019-0011